Finitely Generated Annihilating-Ideal Graph of Commutative Rings

نویسندگان

  • A. Tehranien Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • R. Taheri Department of Mathematics, Shahrekord Branch, Islamic Azad Univercsity, Shahrekord, ‎Iran.
چکیده مقاله:

Let $R$ be a commutative ring and $mathbb{A}(R)$ be the set of all ideals with non-zero annihilators. Assume that $mathbb{A}^*(R)=mathbb{A}(R)diagdown {0}$ and $mathbb{F}(R)$ denote the set of all finitely generated ideals of $R$. In this paper, we introduce and investigate the {it finitely generated subgraph} of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_F(R)$. It is the (undirected) graph with vertices $mathbb{A}_F(R)=mathbb{A}^*(R)cap mathbb{F}(R)$ and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=(0)$. First, we study some basic properties of $mathbb{AG}_F(R)$. For instance, it is shown that if $R$ is not a domain, then $mathbb{AG}_F(R)$ has ascending chain condition (respectively, descending chain condition) on vertices if and only if $R$ is Noetherian (respectively, Artinian). We characterize all rings for which $mathbb{AG}_F(R)$ is a finite, complete, star or bipartite graph. Next, we study diameter and girth of $mathbb{AG}_F(R)$. It is proved that ${rm diam}(mathbb{AG}_F(R))leqslant {rm diam}(mathbb{AG}(R))$ and ${rm gr}(mathbb{AG}_F(R))={rm gr}(mathbb{AG}(R)).$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact annihilating-ideal graph of commutative rings

The rings considered in this article are commutative rings with identity $1neq 0$. The aim of this article is to define and study the exact annihilating-ideal graph of commutative rings. We discuss the interplay between the ring-theoretic properties of a ring and graph-theoretic properties of exact annihilating-ideal graph of the ring.

متن کامل

The principal ideal subgraph of the annihilating-ideal graph of commutative rings

Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set   of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where   $mathbb{P}(R)$ is...

متن کامل

The sum-annihilating essential ideal graph of a commutative ring

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...

متن کامل

Classification of rings with toroidal annihilating-ideal graph

Let R be a non-domain commutative ring with identity and A(R) be theset of non-zero ideals with non-zero annihilators. We call an ideal I of R, anannihilating-ideal if there exists a non-zero ideal J of R such that IJ = (0).The annihilating-ideal graph of R is defined as the graph AG(R) with the vertexset A(R) and two distinct vertices I and J are adjacent if and only if IJ =(0). In this paper,...

متن کامل

the principal ideal subgraph of the annihilating-ideal graph of commutative rings

let $r$ be a commutative ring with identity and $mathbb{a}(r)$ be the set   of ideals of $r$ with non-zero annihilators. in this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $r$, denoted by $mathbb{ag}_p(r)$. it is a (undirected) graph with vertices $mathbb{a}_p(r)=mathbb{a}(r)cap mathbb{p}(r)setminus {(0)}$, where   $mathbb{p}(r)$ is...

متن کامل

Domination Number in the Annihilating-ideal Graphs of Commutative Rings

Let R be a commutative ring with identity and A(R) be the set of ideals with nonzero annihilator. The annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set A(R) = A(R)r {0} and two distinct vertices I and J are adjacent if and only if IJ = 0. In this paper, we study the domination number of AG(R) and some connections between the domination numbers of annihilating-ideal...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 10  شماره 4

صفحات  375- 383

تاریخ انتشار 2018-11-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023